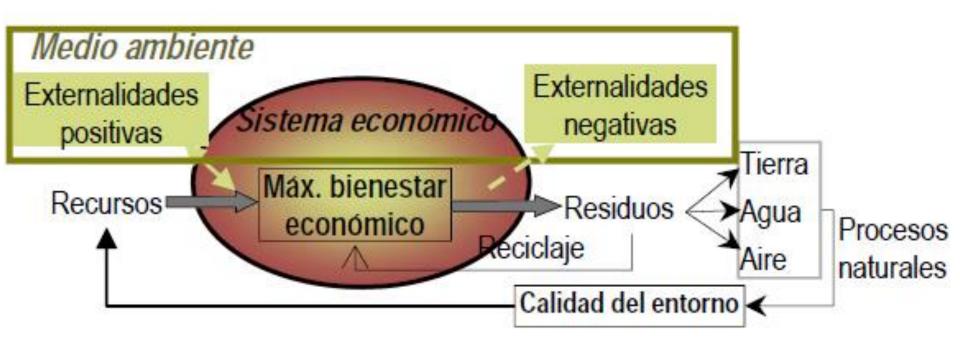

Curso Taller Regional

Bases Conceptuales y Metodológicas para el Diseño de Esquemas de Pago po Global Servicios Ecosistémicos en la región Andina de Colombia, mayo 2013.

Monitoreo y evaluación de los programas de PSA Elementos conceptuales prácticos y vivenciales MSc. Bayron Medina, Guatemala


CONCEPTO DE DESARROLLO SUSTENTABLE

Satisfacer las necesidades de las generaciones presentes sin comprometer las posibilidades de las del futuro para atender sus propias necesidades, es el principio del desarrollo sustentable.

(<u>Informe de Brundtland</u> de 1987, redactado por la Dra. Gro Harlem Brundtland y que se llamó originalmente "Nuestro Futuro Común").

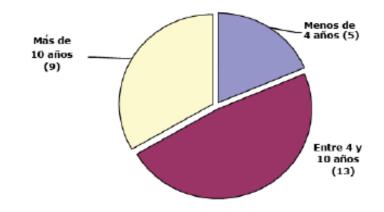
Economía de Mercado Vrs Economía Ambiental

Fuentes: Barry C. Field y Martha K. Field, 2003

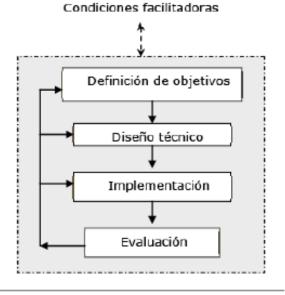
Servicios Ambientales o Servicios Ecosistémicos

Son elementos intangibles y tangibles; que provienen de los ecosistemas naturales e inciden en la calidad de vida y en el ambiente.

Pueden ser utilizados por las personas para su propio bienestar (Provisión de agua, purificación y regulación del aire, del agua, disfrute del paisaje, polinización de cultivos, protección de cuencas, (EEMM 2005)

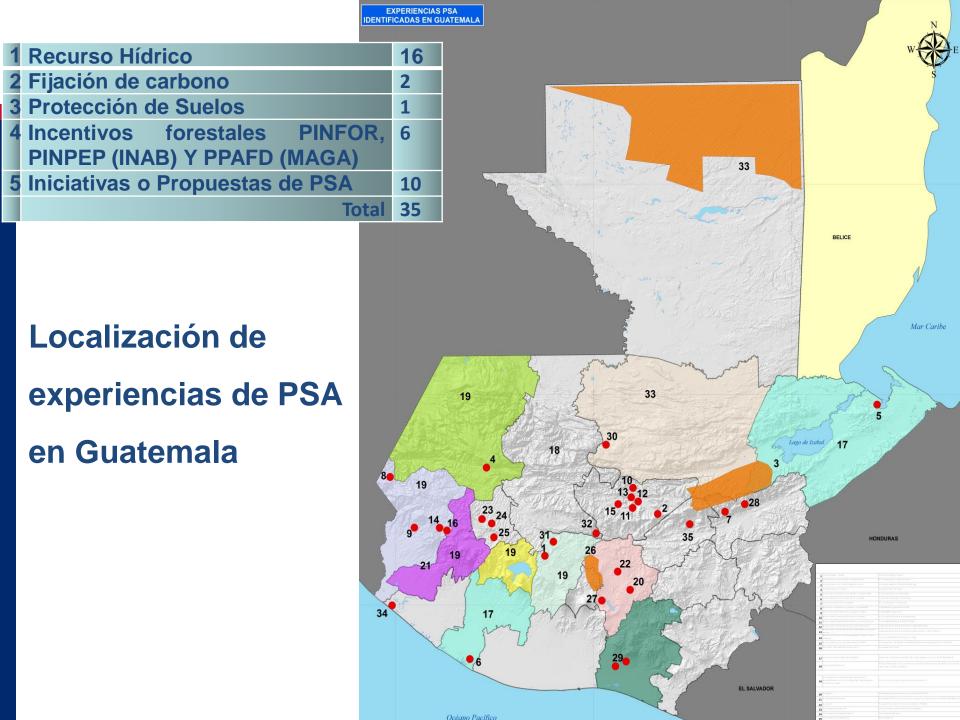

Son una externalidad positiva, es decir, incrementan el bienestar o productividad de otras personas o empresas, pero que estas, por una falla de mercado, no retribuyen al productor (precio cero. (Azqueta D. 1994)

Principio de PSA	Descripción
Transacción voluntaria	Negociaciones y acuerdos voluntarios de contrato entre las partes, no influida por una reglamentación y/o acuerdo nacional e internacional.
Servicio ecosistémi definido	Medible y debe cumplir con el principio de Adicionalidad (que ejerza un efecto lo bastante grande y acumulativo para constituir una diferencia desde el inicio). Para ello, se debe establecer la situación ambiental de partida sobre la que se adiciona el servicio.
Comprado por (al menos) un usuario	El comprador debe ser el beneficiario del servicio y debe monitorear el cumplimiento del acuerdo (flujo del servicio)
Vendido por (al menos) un proveed	El proveedor debe establecer vigencia de sus derechos de propiedad, para así evitar el riesgo de suplantación de actores.
Condicionalidad	Establecimiento de las condiciones del contrato, continuidad del servicio ambiental, duración,. Los pagos se basan en el monitoreo del cumplimiento de las obligaciones contractuales.
Fuente: Basado en '	Wunder (2005); Ruiz et al. (2007)
	racterística del programa en la medida que el servicio ambiental es provisto que hay un pago asociado.
	ente que lleva a cabo la negociación entre las partes y contribuye al diseño programa.
	stes asociados a las investigación científica, la negociación, el diseño del grama de PSA, la gestión del pago y el seguimiento del mismo.
Fuente: Dussi D. (20	010) a partir de Engel et al. (2008)


Experiencias de mecanismos de compensación, en Centroamérica

FAO, Facility, 2009

País	Número total de casos	Número de casos <100 km²
Guatemala	9	5
Honduras	5	4
El Salvador	5	5
Nicaragua	3	3
Costa Rica	2	1
México	1	0
Cuba	1	0
Rep. Dominicana	1	0
Total casos	27	18



Tipo de Aporte

Anexo 2. Cuadro 4. Matriz de análisis de los estudios de caso regionales

										ios (cuu				9										
Característica desempeño	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Tiempo operación (años)	13	18	4	7	11	15	6	25	19	3	4	5	11	3	3	12	4	6	7	88	5	5	2	6	9	11	1
Beneficiarios realizan aportes voluntarios	Х			X		X					Χ				Х							χ	X				X
Beneficiarios realizan aportes obligatorios	Х		Х		Χ	Х	X		χ			Χ	Х				Χ	Χ	Χ		χ			χ	Х	Χ	
Se compensa monetariamente a los oferentes	Х	X	Х	X	Χ	Х	X		χ		Х	Χ	Х		Х	Χ	Χ	Χ	Χ		χ	χ	X		Х	Χ	X
Existe monitoreo sobre oferentes	Χ		Χ								Χ		Χ		Χ	Χ		Χ	Χ		Χ		Χ		Χ	Χ	X
Hay apoyo financiero externo		Χ	Χ			Χ	Χ				Χ			Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		
Hay apoyo externo en términos de asesoría y capacitación		X	Χ			х	X			Х	Х	Х	х	Х	х	Х	Х	Х	Х		Х	Х	X	Х	х		X
Escala espacial (km²) Baja (B) < 100 Media (M) Entre 100 y 1000 Alta (A) >1000	Α	В	В	В	В	В	В	В	В	М	Α	М	В	В	В	Α	В	В	В	n.d	В	М	В	В	В	М	A
Modelo gestión (municipal, M; local, L; privado, P; Gobierno central, G)	G	L	L	М	L	L	М	L	Р	L	Р	М	Р	L	L	G	L	L	L	G	L	L	M P	М	М	MG	G
Criterios técnicos definen los montos de cobro y/o pago	X	X			X	Х				Χ	Χ	X		X		Χ	Χ	X	Χ		Χ	Χ	X	Χ	Х		X
Criterios técnicos para priorizar áreas de captación hídrica	Х									Χ	Χ	Χ		Χ	Х	Χ							X	Χ		Х	X

1	Programa Nacional PSA, Costa Rica	2	Reserva Monte Alto, Costa Rica	3	Microcuenca La Poza, El Salvador
4	Municipio Tacuba, El Salvador	5	Área Protegida El Playón, El Salvador	6	Joateca, El Salvador
7	Cinquera, Cabañas, El Salvador	8	Municipio Pachalum, Guatemala	9	Finca Santa Elena, Guatemala
10	Municipio San Jerónimo, Guatemala	11	Fondo Agua, Sierra Las Minas, Guatemala	12	Chiantla y Huehuetenango, Guatemala
13	Cerro San Gil, Guatemala	14	Microcuenca río Xaya, Guatemala	15	Microcuenca río Ixtacapa, Guatemala
16	Programa Nacional Incentivos Forestales, Guatemala	17	Las Dantas, Yuscarán, Honduras	18	Río Neteapa, El Paraíso, Honduras
19	Municipio Jesús Otoro, Honduras	20	Comité Bienes y Servicios Ambientales, Honduras	21	Valle de Ángeles, Honduras
22	CORENCHI, Oaxaca, México	23	Cuenca rio Gil González, Belén, Rivas, Nicaragua	24	Microcuenca Golondrina, Río Blanco, Nicaragua
25	Comarca El Regadío, Estelí, Nicaragua	26	Fincas Forestales, Cuenca Río Cauto, Granma, Cuba	27	Cuenca río Yaque del Norte, República Dominicana

CRITERIOS PROPUESTOS PARA JERARQUIZACIÓN DE EXPERIENCIAS DE PSA

		OI.	TENIOS I NOI OES	10317	NA JERARQUIZACION	DE EXI EINENCIAS D				
	Criterio					Indicadores				
#		%		100	80)	60	5	0	30
1	Existencia y disponibilidad									
	documental	13.11	Sistematización	Ε	Informe final MB	Diseño	В	Línea base R	Propuesta	М
2	Escala Geográfica	4.37	Local (Municipal)	Ε	Regional MB	Comunitaria	В			
3	Superficie en hectáreas	8.74	10,283 a 12,85	2 E	7,713 a 10,282 MB	5,143 a 7,712	B 2	2,573 a 5,142 R	2.5 a 2,572	M
4	Duración	8.74	De 15 a 17 año	s E	De 12 a 14 años MB	De 9 a 11 años	В	De 6 a 8 años R	De 0 a 5 años	М
5	Montos pagados mensualmente por el comprador	4.37	Q7.00 a Q9.0	0 E	Q4.00 a Q6.00 MB	Q0.69 a Q3.00	В			
6	¿Quién recibe el pago o compensación?	4.37	Municipalida		Asociación o empresa ME	Jefe de fam.	В	Gobierno R		
7	Organización compradora legalizada	4.37	Ç	Si E					No	M
8	¿Cuantos principios de PSA cumple?	13.11	más de	6 E	De 5 a 6 MB	De 3 a 4	В	De 1 a 2 R		
9	Tipo de pago	13.11	Monetari	o E	En especie MB	1				
	Contexto	13.11	Urban	οЕ	Rural MB					
	Tipo de usuario	12.59	Rieg	οE	Agua potable MB	Mixto	В			
	Total	100								

* PONDERACIÓN	Cualitativa			cuantitativa				
	Excelente=	E =	:	100	13.11	12.59	8.74	4.37
	Muy bueno	= MB =		80	10.49	10.07	6.99	3.50
	Bueno=	В =	=	60	7.87	7.55	5.24	2.62
	Regular=	R =	=	50	6.56	6.29	4.37	2.19
	Malo=	М =	•	30	3.93	3.78	2.62	1.31

	Pasos del proceso de las acciones piloto d	le PS	SA	ı
Paso	os	Acci piloto		
		Α	В	С
1	Diagnóstico biofísico	X	X	X
2	Aforos y análisis de la calidad del agua (oferta y demanda hídrica)	X	X	X
3	Valoración económica hídrica. Disposición a pagar de la población demandante.	X	-	X
4	Propuesta del mecanismo de PSA a la población y búsqueda del visto bueno de ésta.	X	-	X
5	Promoción, divulgación y capacitación a la población demandante y oferente sobre el PSA.	X	-	X

creación de un Fondo de Servicios Ambientales con involucramiento gobierno,

Ejecución del plan de mejora y asistencia técnica a oferentes de servicios

Establecimiento de monitoreo y evaluación de los servicios ambientales, en

8 Convenios bilaterales o contratos a mediano plazo, con los proveedores.

X

Χ

X

Χ

X

X

X

X

X

X

X

X

X

X

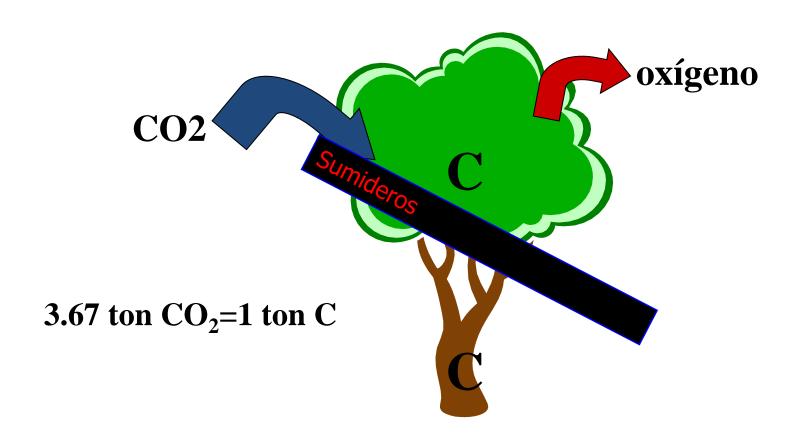
X

X

X

6 Reglamentación, actas, acuerdos, mecanismos legales,

9 Establecimiento del sistema de cobro destinado a PSA.


12 Sistematización y documentación de las experiencias de PSA.

sociedad civil y sector privado

ambientales en zona de recarga.

base a acuerdos.

Fijación de carbono

1 ha. bosque nuevo fija 4ton C/año. Puede llegar a almacenar 50-295 tons.

ÁRBOLES DE SOMBRA

CAFETOS

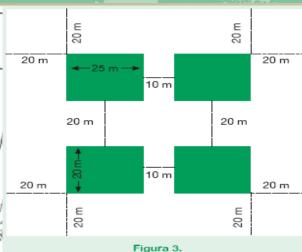
SUELO

Metodología

Indicadores Ambientales por uso de la tierra en la cuenca

Pasos:

- 1. Entrevista
- 2. Croquis de finca
- 3. Ubicar lotes representativos
- 4. Ubicar parcelas de medición
- 5. Trazar parcelas internas
- 6. Toma de información para los servicios ambientales




Metodología para la evaluación de servicios ambientales

Dibujo de las parcelas internas dentro de la parcela de una hectárea

Fuente: Dr. Bruno Locatelli, CATIE-CIRAD

SERVICIO AMBIENTAL	CRITERIO	INDICADORES
		Manejo de contaminación del agua
CONSERVACIÓN DEL	CONSERVACIÓN DEL	Sedimentación en las aguas.
AGUA	AGUA	Evidencia de erosión o deslizamientos en nacimientos, ríos, caminos y sedimentación en partes bajas de caminos.
		Obras de prevención o recuperación
SERVICIO AMBIENTAL	CRITERIO	INDICADORES
		Número de estratos arbóreos.
		Número de especies de árboles nativos por hectárea
	CALIDAD DE HÁBITAT	Número de árboles y arbustos en una hectárea con DAP mayor a 5 cm
CONSERVACIÓN DE		Valoración cualitativa de incidencia de epifitas en los árboles
LA BIODIVERSIDAD		Porcentaje de cobertura de sombra
		Aplicación de herbicidas
	USO DE AGROQUIMICOS	Aplicación de plaguicidas
		Aplicación de fertilizantes
SERVICIO AMBIENTAL	CRITERIO	INDICADORES
FIJACION DE	CARBONO FIJADO POR	Toneladas de carbono fijado por los árboles por hectárea
CARBONO	ÁRBOLES Y ARBUSTOS	Toneladas de carbono fijado por los cultivos perennes por hectárea
SERVICIO AMBIENTAL	CRITERIO	INDICADORES
2011050111214115	00105514:0:4:155	Porcentaje de cobertura del suelo
CONSERVACIÓN DEL SUELO	CONSERVACIÓN DEL SUELO	Incidencia de erosión
		Obras de conservación del suelo

		Э					no	amia	Hule	Limon	a	maiz	Papaya
Finca	Buenos Aires	San Elias	San Luis	Laureles	Laurel es	Buena Vista	Patrocini o	Tranq uilidad	Filade Ifia	Filade Ifia	San Luis	San Elias	Montes Eliseos
Biodiversid ad	38.15	13.35	5.35	5.26	3.56	2.81	1.2	0.91	0.61	-0.5	-0.8	-2	-5.6
Indice Biodiversid ad	1	0.35	0.14	0.14	0.09	0.07	0.03	0.03	0.02	0.02	0	0	0
Carbono	148	248.6	0.58	36.4	5.19	27.8	18.6	10.6	17.9	0.62	5	5	0.02

Palma

african

Pláta

Macad

Cañ

Café

somb

ra de

Ingas

Palo

Blanco

3

5

Café

sombr

a

Bosqu

silbó

pasto

ril

Bosque

primari

0

1

2

4

Uso de la

tierra

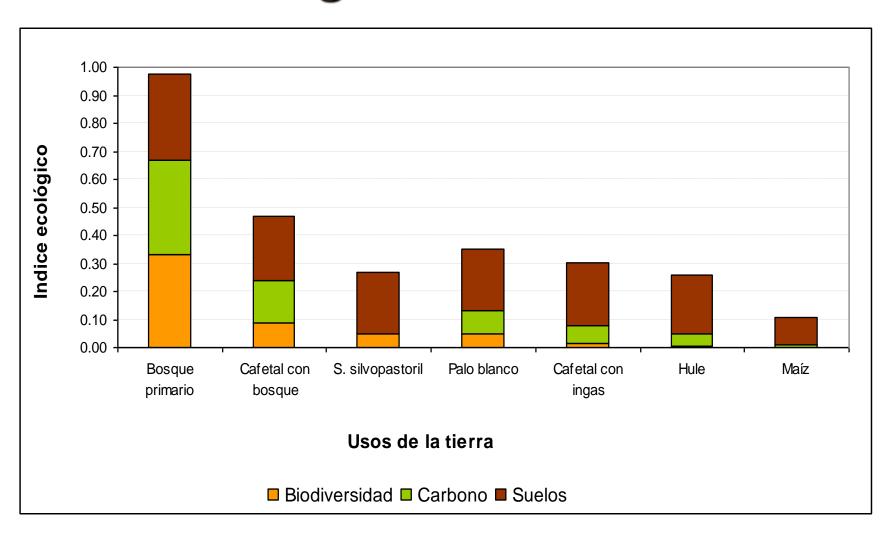
1	0.35	0.14	0.14	0.09	0.07	0.03	0.03	0.02	0.02	0	0	0
148	248.6	0.58	36.4	5.19	27.8	18.6	10.6	17.9	0.62	5	5	0.02
1	0.44	0	0.07	0.01	0.05	0.03	0.02	0.03	0	0.01	0.01	0
0.62	0.64	0.67	0.67	0.67	0.66	0.46	0.65	0.64	0.64	0.33	0.63	0.43
60	10	5	30	5	3	38	5	35	2	5	10	5
0.97	0.49	0.5	1	0.5	0.5	0.58	0.49	0.98	0.49	0.32	0.49	0.43
0.87	0.48	0.27	0.29	0.26	0.26	0.17	0.23	0.23	0.22	0.11	0.21	0.14
	148 1 0.62 60 0.97	148 248.6 1 0.44 0.62 0.64 60 10 0.97 0.49	148 248.6 0.58 1 0.44 0 0.62 0.64 0.67 60 10 5 0.97 0.49 0.5	148 248.6 0.58 36.4 1 0.44 0 0.07 0.62 0.64 0.67 0.67 60 10 5 30 0.97 0.49 0.5 1	148 248.6 0.58 36.4 5.19 1 0.44 0 0.07 0.01 0.62 0.64 0.67 0.67 0.67 60 10 5 30 5 0.97 0.49 0.5 1 0.5	148 248.6 0.58 36.4 5.19 27.8 1 0.44 0 0.07 0.01 0.05 0.62 0.64 0.67 0.67 0.67 0.66 60 10 5 30 5 3 0.97 0.49 0.5 1 0.5 0.5	148 248.6 0.58 36.4 5.19 27.8 18.6 1 0.44 0 0.07 0.01 0.05 0.03 0.62 0.64 0.67 0.67 0.67 0.66 0.46 60 10 5 30 5 3 38 0.97 0.49 0.5 1 0.5 0.5 0.58	148 248.6 0.58 36.4 5.19 27.8 18.6 10.6 1 0.44 0 0.07 0.01 0.05 0.03 0.02 0.62 0.64 0.67 0.67 0.67 0.66 0.46 0.65 60 10 5 30 5 3 38 5 0.97 0.49 0.5 1 0.5 0.5 0.58 0.49	148 248.6 0.58 36.4 5.19 27.8 18.6 10.6 17.9 1 0.44 0 0.07 0.01 0.05 0.03 0.02 0.03 0.62 0.64 0.67 0.67 0.67 0.66 0.46 0.65 0.64 60 10 5 30 5 3 38 5 35 0.97 0.49 0.5 1 0.5 0.5 0.58 0.49 0.98	148 248.6 0.58 36.4 5.19 27.8 18.6 10.6 17.9 0.62 1 0.44 0 0.07 0.01 0.05 0.03 0.02 0.03 0 0.62 0.64 0.67 0.67 0.67 0.66 0.46 0.65 0.64 0.64 60 10 5 30 5 3 38 5 35 2 0.97 0.49 0.5 1 0.5 0.5 0.58 0.49 0.98 0.49	148 248.6 0.58 36.4 5.19 27.8 18.6 10.6 17.9 0.62 5 1 0.44 0 0.07 0.01 0.05 0.03 0.02 0.03 0 0.01 0.62 0.64 0.67 0.67 0.67 0.66 0.46 0.65 0.64 0.64 0.33 60 10 5 30 5 3 38 5 35 2 5 0.97 0.49 0.5 1 0.5 0.5 0.58 0.49 0.98 0.49 0.32	148 248.6 0.58 36.4 5.19 27.8 18.6 10.6 17.9 0.62 5 5 1 0.44 0 0.07 0.01 0.05 0.03 0.02 0.03 0 0.01 0.01 0.62 0.64 0.67 0.67 0.67 0.66 0.46 0.65 0.64 0.64 0.33 0.63 60 10 5 30 5 3 38 5 35 2 5 10 0.97 0.49 0.5 1 0.5 0.5 0.58 0.49 0.98 0.49 0.32 0.49

5

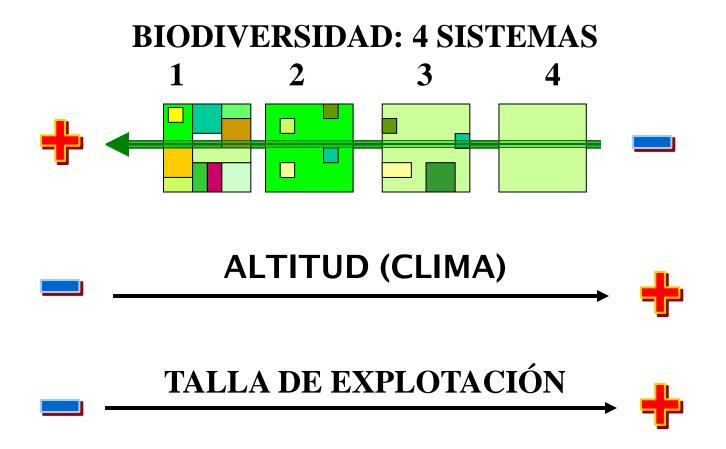
9

6

6


7

11

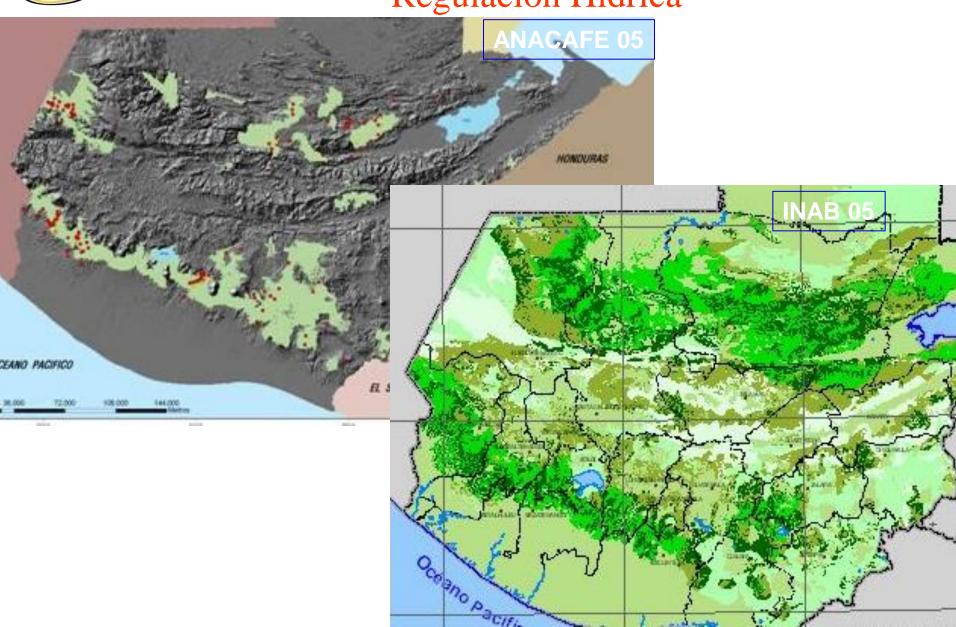

8

10

Índice ecológico- Indice Economico

RELACIÓN ENTRE BIODIVERSIDAD, ALTITUD Y TALLA DE EXPLOTACIÓN

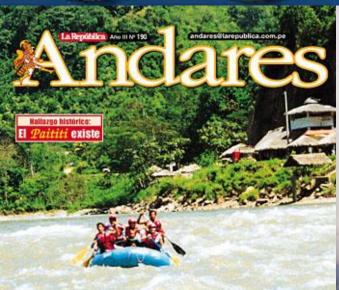
Como fomentar la provisión de Servicios Ecosistémicos en la agricultura?



Requisitos básicos de las certificaciones

Zona Cafetalera y Tierras Forestales, Captación y Regulación Hídrica

POTENCIAL HIDRICO (CONSUMO HUMANO,



La Ruta del Café

Ruta del Café

Este 24 de setiembre todos a CHANCHAMAYO

LA RUTA DEL CAFÉ

La ruta del fé

El costurismo se impone en esta época. Por eso, en la zona cafetera las viejas haciendas se han convertido en tranquilísimos lugaces para disfrutar de los colores en esta región del país.

Mapa de ruta

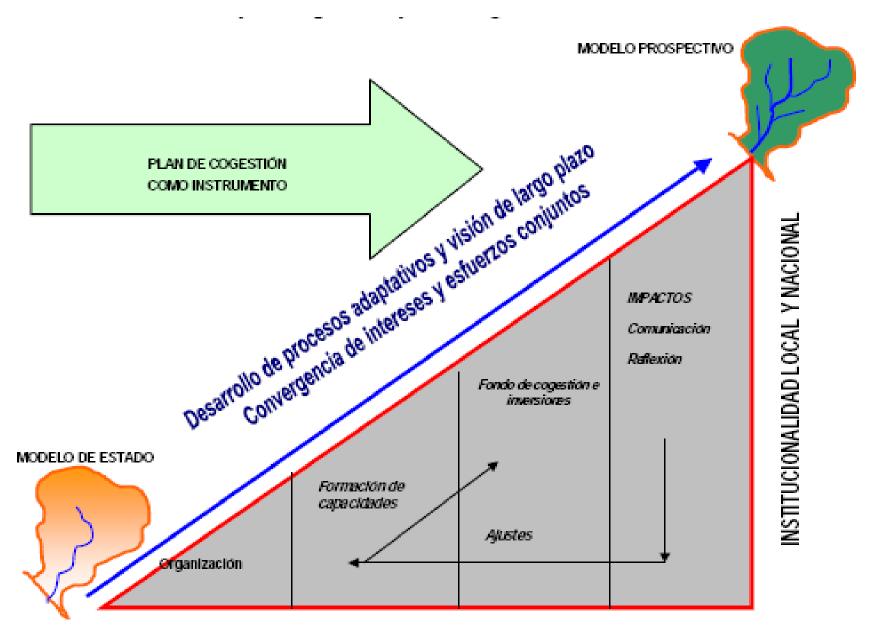
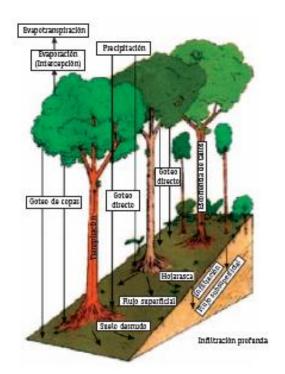
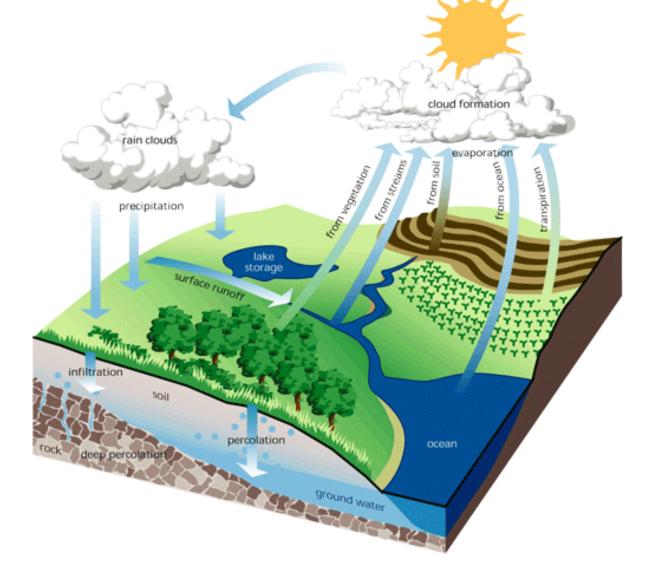


Figura 4. El esquema básico que explica la cogestión de cuencas

Servicios de cuencas y ejemplos de indicadores del estado de los servicios

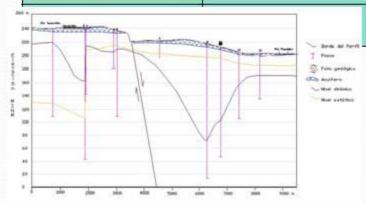

Servicios de cuencas	Atributos del servicio	Plantear el indicador	Indicador de uso sostenible
	Pro	oveer Servicios	
Abastecimiento de agua	 Precipitación, infiltración, retención de agua en suelos, filtración, caudal de la vía fluvial, caudal del agua subterránea 	 Capacidad de almacenamiento de agua (m³/m²) Concentracones de contaminantes 	• Descarga (m³año))
	Re	gular Servicios	
Regulación de caudales hídricos	 Retención y descarga de agua (especialmente por bosques y humedales) Alamcenamiento de agua por ríos, lagos y humedales Carga y descarga de agua subterránea 	 Capacidad de infiltración (mm/h) Capacidad de los suelos para almacenar agua (m³/m³) 	Volumen de caudal base (m³/año);
Mitigación de riesgos	 Menores picos en inundaciones y daños de tormentas Protección costera Estabilidad de pendientes 	 Capacidad natural máxima de almacenar agua (m³/m²) 	 Tamaño (km2) y valor económico (US\$/km2/año) del área protegida de inundaciones
Control de erosion de suelos y sedimentación	 Protección de suelos por vegetación y biota de suelos 	 Capacidad de infiltración (mm/h) Longitud de la pendiente (m) Tierra yerma (%) 	 Pérdida de suelos (kg/ha/año)) Almacenamiento de sedimento (kg/ha/año)
	Ser	vicios de apoyo	
Caudales ambientales	 Mantenimiento del régimen de caudal fluvial 	 Área de hábitat criticos (Ha) Descarga para cada estación (m³/día) 	 Especies y pobllación de peces Captura total de peces (t/año)
	Servicios (Culturales y de Recreo	
Servicios estéticos y recreativoss	 Calidad y características del paisaje 	 Reconocimiento declarado Valor recreativo (p.e. precio por entrar (US\$/visita) 	Casas a orillas de lagos (cantidad/km)


Smith, M., de Groot, D., Perrot-Maitre, D. y Bergkam, G. Pago: Establecer pagos por servicios de cuencas. IUCN, Gland, Suiza, 112pp.

FONDO PARA EL LOGRIPORO CLIMATOLOGIA MINISTERIO DE AMBIENTE L'ACEURSOS NATURALES

Recursos Hídrico / Climatología /

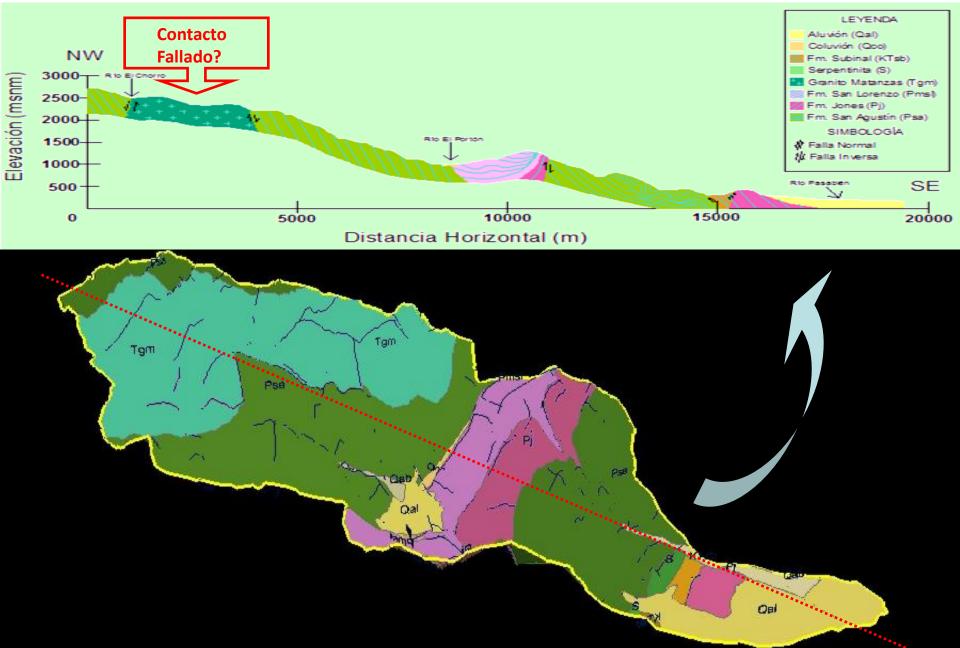
SIG monitoreo Hidroclimatico en cuencas

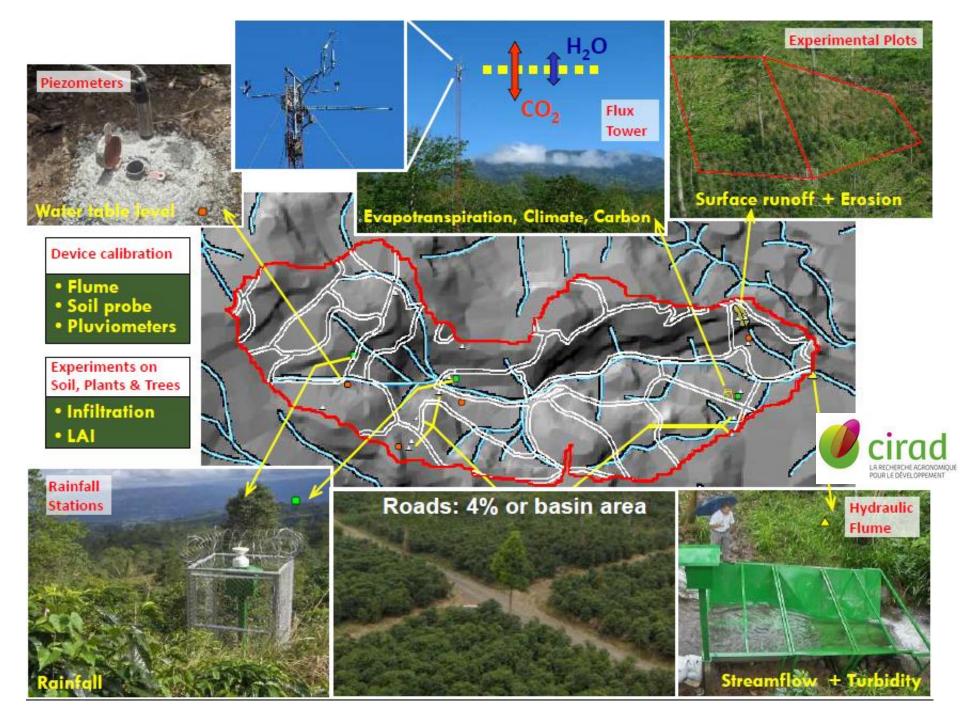


Balance Hídrico de la Subcuenca Río Pasabién

FONDO PARA EL LOGRO DE LOS ODM

Entrada	m3/año	Salidas	m3/año	%
Precipitación	187,036,215	Evapotranspiración Real	49,920,466	26.69
Caudal		Retención	33,331,758	17.82
2,867		Escorrentía	16,982,198	9.08
litros/seg		Recarga Hídrica	90,426,499	48.35
10 To 100		TOTAL	190,660,921	101.94


Caudal 58 litros/seg

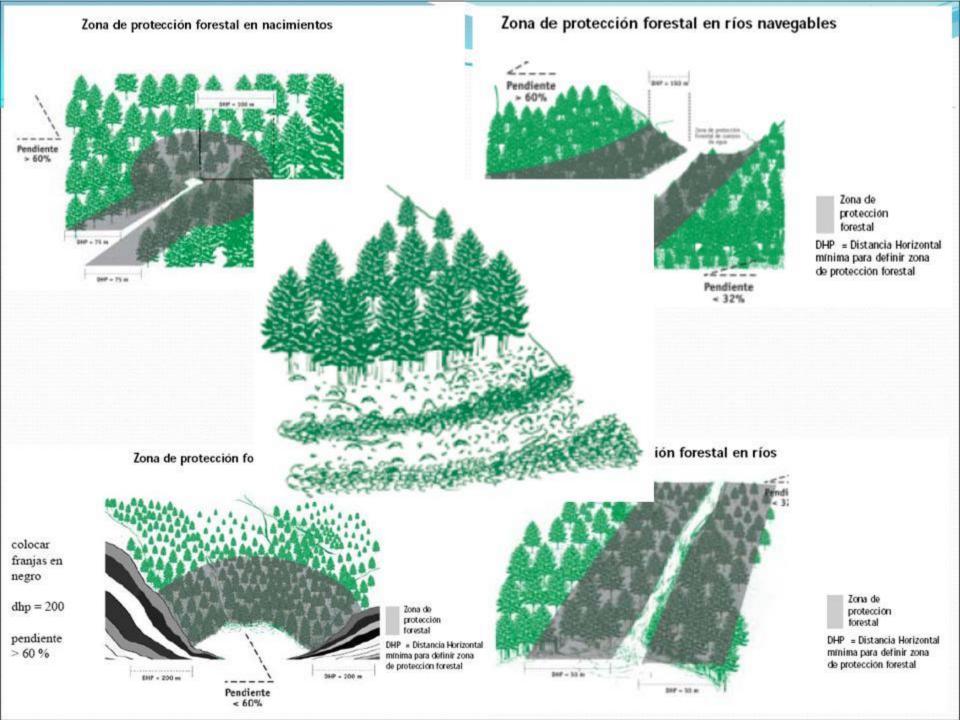


Inversiones Pasabien

FIG. 4: Sección NW-SE de la Cuenca PRELIMINAR, (Arriba). FIG 5: Relaciones espaciales de la litología en la Cuenca, (Abajo).

Erosión: a la escala de la parcela

Escalamiento: Parcelas -> Cuenca


En	el	espacio
	\sim	COPACIO

Cuenca = Parcelas + Caminos, rios, otros?

Area 100% = 96% + 4%

Escorr. Superf. 100% = 4% + 96%

Erosión 100% = 5% + 95%

META: Las instituciones gubernamentales, las comunidades, los gobiernos municipales y mancomunidades del corredor seco negocian

esquemas de pago	o compensación de serv nfasis en el recurso hídr	icios ambientales con
RESULTADO 1 Generar conocimientos y habilidades en servicios ambientales énfasis en hídricos en el marco del cambio climático.	RESULTADO 2 Establecimiento de la base de los conocimientos técnico y científicos de los servicios ambientales (estado, oferta demanda)	RESULTADO 3 Generación de propuestas de sistemas de compensación pago de servicios ambientales con énfasis en los hídricos.
 . Procesos de transmisión del conocimiento, comunitario, urbano, e institucional •Identificación de el publico meta •Sistematización de la metodología •Elaboración de guías •Redes, alianzas estratégicas y expansión 	Análisis de la problemática. •Criterios de selección de las micro cuencas •líneas de base de las micros • Identificación de la potencialidad •Monitoreo de los indicadores ambientales y su stentabilidad •Valorización Económica Ambiental (viabilidad)	 . Procesos de participación formación de comités de cuencas . Procesos de negociación . Planteamiento de Esquemas por microcuenca . Esquemas comunitarios . Esquemas Municipales . Esquemas Institucionales . Esquemas Mixtos

FORMATOS DE PROYECTOS E INSTRUMENTOS DE MONITOREO

Annual Targets	Indicador	Meta	Fee	ha	E	jecu	ción	trime	estra	ıl	Acum	Porcent	aje Cum la fech	olimiento a a	Agemcia	Responsable
Alliludi Targets	inuicador	ivieta	Inicio	Final	T3	T 4	T1	T2	T3	T4		0 a 59	<mark>60 a 79</mark>	80 a 100	SNU	Responsable
1.1. Políticas rectoras y no	ormativas sectoriales desa	rrollada	s, mejor	adas y ap	licad	as a n	ivel l	ocal y	artio	culada	as al plar	o naciona	al con ent	es rectores fo	rtalecidos.	
		1	Ene-12	Mar-12			0.2				0.2	20	0	0	PNUD	GEA, MAGA
Productos (outputs)	Actividades plan (Lista de las acti	vidade	es, inclu						Ca T	lenda T	rio T T 3 4	Respons específic	:0 F		evisto Có Descri dig pción	Monto US\$

esperados del proyecto

los productos)

SEMÁFORO

Producto 1 Línea de Base: **Indicadores: Metas:**

COLOR	SIGNIFICADO
Verde	Acuerdo cumplido
Amarillo	Acuerdo en proceso de cumplimiento
Rojo	Acuerdo incumplido

Monitoreo del Programa según Marco de Seguimiento y Evaluación.

Producto	Meta	Resultado según términos descritos en el indicador	Fecha de consecución	% Alcanzado	Comentarios sobre los Productos Finales
4.1	Al menos 60% de los tomadores de decisión de instituciones gubernamentales, municipalidades y mancomunidades cuentan con conocimientos y habilidades sobre riesgos y servicios ambientales con énfasis en los hídricos.	75% de los tomadores de decisión de las instituciones gubernamentales, municipalidades y mancomunidades del Corredor Seco cuentan con nuevos conocimientos sobre servicios ambientales con énfasis en los hídricos.	Noviembre 2011	100%	El porcentaje de personas capacitadas a nivel directivo varía debido al cambio de personal que se da en las instituciones públicas. En algunos casos los subalternos han pasado a la posición de la Dirección con el beneficio de que ellos también habían sido capacitados en algún tema por el Programa Conjunto.
4.1	50 cursos de capacitación en servicios ambientales impartidos a comunidades.	133 cursos de capacitación impartidos a comunidades de Baja Verapaz, Chiquimula, Zacapa y El Progreso sobre cambio climático y servicios ambientales.	Junio 2011	100%	
4.2	3 estudios de valoración económica de servicios ambientales.	3 estudios de valoración económica en las microcuencas de Cachil (Salamá), Xesiguán (Rabinal) y Tacó (Chiquimula) en desarrollo.	Noviembre 2011	76%	En el mes de noviembre se reportan avances de los tres estudios en calidad de borrador.
4.3	Al menos 2 cartas de acuerdo y/o convenios para la ejecución de sistemas de pago y/o compensación de servicios ambientales.	1 acta comunitaria para un sistema de compensación comunal en la microcuenca del Río San Miguel; y 1 convenio MARN-MANCOVALLE para ejecutar un Mecanismo de PSA en San Miguel Chicaj y Rabinal.	Noviembre 2011	97%	Debido a factores externos al Programa, no se conformó el Comité de Cuenca de la Microcuenca de Rabinal, por lo que el producto no tendrá más de 97%.

Esquematización de PSA Cuencas, caso -pc

	Micro cuenca	Línea Base	Ficha técnica	Monitor Hídrico Climatico	Programa Capacitación	Idenficación Oferta- Demanda	Estudios Valoración Económica	Comité Micro Cuenca	Esquema PSA, Implemen tación
1	Cachil, Salamá B.V	Х	X	X	Х	Х	Х	X	
2	Dolores, Sn M.Chicaj	х	х	Х	Х	х	х	Х	xxx
3	Xesiguan, RabinalB.V	Х	Х	Х	Х	х	х		Х
4	Zope Cubulco B	Х		Х	Х	х			
5	La Virgen Chol B.V.	Х		Х	Х				
6	Pamacal, Granados	Х		Х	Х				
7	Teculután, Zacapa	Х	х	Х	Х	х		Х	
8	Pasabién, Río Hondo	Х	Х	х	Х	х		х	
9	Huite, Zacapa	Х	Х	х	х	Х		Х	
10	Hato Sn. Agustín A. El Progreso	Х	Х	Х	Х	Х		Х	
11	Taco Chiquimula	Х	Х	х	Х	Х	Х	Х	
12	Mongoy, Asunción M. Jutiapa				Х			Х	

Identificación de la problemática, línea base.

PROGRAMA CONJUNTO 'FORTALECIMIENTO DE LA GOBERNABILIDAD AMBIENTAL ANTE EL RIESGO CLIMATICO EN GUATEMALA"

FICHA TÉCNICA DE LA MICROCUENCA RÍO SAN MIGUEL, SAN MIGUEL CHICAJ, B.V. Guatemala, Abril 2011

1. DATOS GENERALES DE LA MICROCUENCA.

Extensión: 11,040 ha. Altitud: 880 - 2,378 ms Población: Total del município 23,201 (48.25) mujeres) y poblacion de microcuenca 4,928; Comunidades: 12, Aldeas: San Francisco, El Progreso, Dolores, San Rafael e Ixcayán. Densidad Poblacional 63 hab/km2. **Población Indigena:** 95.10 %. Población total microcuena: 13,962 personas y 2,619 hogares. Beneficiarios Directos: Cabecera municipal San Miguel Chicaj y comunidades.

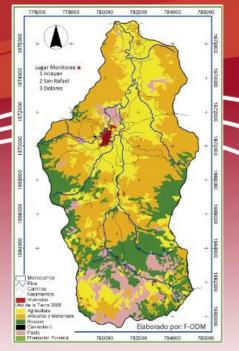
Clima: Precipitación: 700 a 900 mm. Temperatura: Máxima 30.9°C, Mínima 17.0°C y Media 23.4°C. Hidrología: Subcuenca Salamá, Cuenca Río Chixov. Vertiente Golfo de Mexico. Longitud cauce principal 40.23 km. Ríos: San Rafael, Ixcayan, Chicaja, Dolores, San Miguel. Quebradas: Santa Rita, El Mezcal, Chopen, El Jute, Pacani, el Burro, Champeres, El Palmar,

Fisiografía: Sierra de Chuacus y Superfícies Planas Interiores de Chuacus.

2. CARACTERÍSTICAS BIOFÍSICAS DE LA MICROCUENCA.

2.1. Recurso Forestal.

Zonas de Vida: Bosque Muy Húmedo Subtropical Frío, Bosque Húmedo Subtropical Templado y Bosque Seco Subtropical.

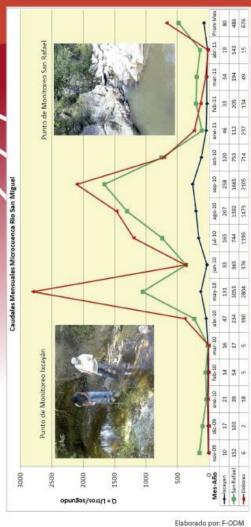

Cuadro 1. Uso del suelo 2006 microcuenca San Miguel.

Uso Actual del Suelo	Área Ha	%
Agricultura	3,112	28.20
Arbustos y Matorrales	4,480	40.58
Pastos	1,059	9.59
Plantación Forestal	07	0.06
Bosque	2,293	20.77
Rocas Descubiertas	01	0.01
Urbano	56	0.51
Vivienda	30	0.27
Cementerio	02	0.02
TOTAL	11,040	100.00

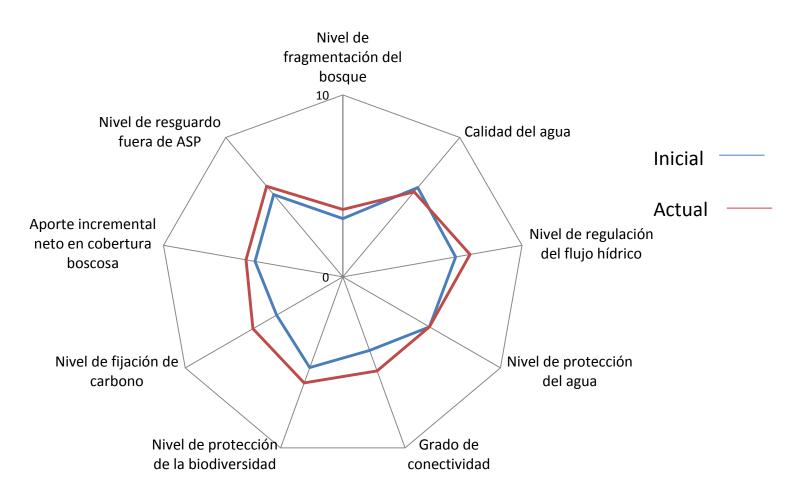
Tasa de deforestación anual (1996-2006): 32 ha/año. Incendios forestales: 24 incendios forestales durante el 2005 - 2009, extensión total 199.2 ha.

Consumo de leña promedio por familia: 2.11 m³.

Mapa 1. Uso actual del suelo y cobertura vegetal 2006.

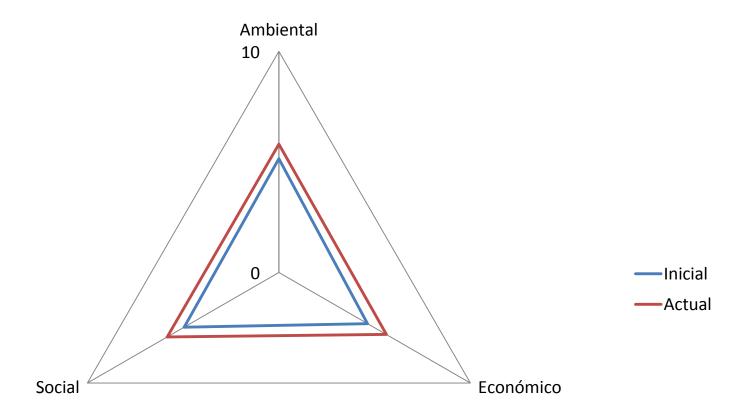

2.2. Recurso Hídrico.

La población se abastece de nacimiento de la parte alta, para el área urbana se tiene dos pozos mecánicos de los cuales solo uno


Consumo de agua diario por familia: 260 – 766 litros, promedio de 442 litros Usuarios de riego: Chopen, San Rafael, Las Vegas. Ixcayan, Pachalum y Rincón de Jesús; 16 usuarios para un total de 1.33 ha (aspersión). Arrendamiento de la tierra en la parte baja de la microcuenca: Q1,300.00 con riego/cosecha (consulta local) necesario solo colocar cerco de alambre. Tarifas por el servicio municipal de agua: No pagan San Rafael, Dolores y Las Trojas, Q5.00/mes Chopen y Chicaja. Q15.00/año: Santa Rita, Las Vegas, Rincón de Jesús y Rincón San pedro. Cabecera Municipal Q1.12/mes. Drenaje: No existe servicio de Drenaje. Letrinas 23% Las Vegas, Dolores 73%, Pachalúm 78% y 0% Pacaní.

12 Nacimientos (Línea Base), ninguno tiene actividades de protección y conservación.

Gráfica 1. Caudales Microcuenca Río San Miguel



Efectos en la conservación de ecosistemas

Fuente: Estudio de la CGR de Costa Rica/Barrantes

Efecto global del PPSA

